


High pressure pump&booster

PUMSTER

ADDRESS

140, Daehwa-ro 106 beon-gil, Daedeok-gu, Daejeon

CONTACT

+82-42-716-0085

FAX

+82-42-716-0086

E-MAIL

pumster@pumster.com

PRODUCT

LIQUID PUMPS METERING PUMPS PRESSURE TESTING

CONTENTS

Company Profile	Company introduction Main Products	02 03
Gas Boosters	Gas Booster Series	04
dd booste.s	GB-SS	05
	GB-SD	08
	GB-DS	11
	GB-DD	14
	GB-DS-7(160Φ)	17
	GB-QS-7(200 <i>Φ</i>)	20
Liquid Pumps	Liquid Pump Series	23
, ,	LSS	24
	LSD	27
	LST	30
Metering Pumps	Metering Pump Series	33
	PSMV	34
	PSMH	36
	PSMVT	38
Pressure Testing	Pressure Testing Series	40
Application	How we apply	45

THE LEADING MANUFACTURER IN HIGH PRESSURE PUMP

As a subsidiary of ILSHIN AUTOCLAVE, accumulated in the technology and experience of high temperature and high pressure for 20 years, PUMSTER has accumulated abundant experiences related to gas booster, liquid pump, metering pump, pressure tester, EPC (Engineering, Procurement & Construction) is the best company in Korea.

All of our employees will make efforts to become a company that is faithful to the satisfaction of our customers so that we can feel the value of our own by using only Pumpster products.

COMPANY HISTORY

MAIN PRODUCTS

Pumster has specialized in high pressure pumps, which has manufactured air dirven gas boosters and liquid pumps, metering pumps and pressure testing.

Gas Boosters

It is for compressing or increasing gas such industrial gas (Nitrogen, Carbon dioxde, Helium, Methane).

Liquid Pumps

It is for transferring or increasing liquid.

Metering Pumps

Metering pumps, which are reciprocating positive displacement pumps, provide the greatest possible metering accuracy.

Pressure testing

It is order-made products which is suitable for internal/external pressure, leakage, bursting and fatigue by controlling low and high pressure.

GASBOOSTER SERIES

Pumster Air driven gas boosters are suitable for explosion proof area.

Pumster air driven gas boosters work on the principle of Pascal's law by the difference of compression ratio.

HOW IT WORKS

Pneumatic operation by applying Pascal's Law

Based on Pascal's law, air driven GAS BOOSTER is increasing the pressure by the compression ratio. Air pressure makes the plunger to reciprocate. With repeated reciprocating of the plunger, it discharges and increases the gas to out-check after compressing the gas through in-check.

Features of Gas Booster

Applied in industrial gas and special gas such as Argon, Helium, Nitrogen, Oxygen etc.,

Stay cool when working hard due to a cooling jacket

No requirement for electricity

Oil free, no requirement for oil replacement, contamination

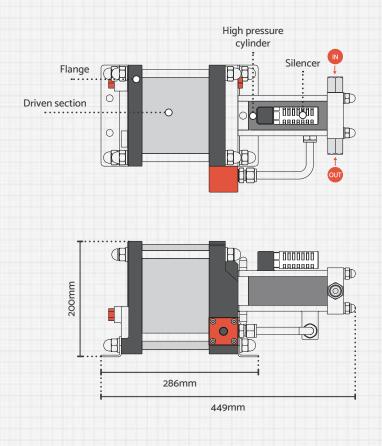
Suitable for explosion proof area

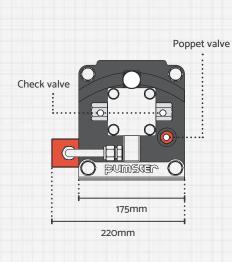
Available as a complete packaged system

GB-SS SERIES

Single stage & Single driven

Gas Booster GB-SS is consists of single stage and single driven part. There are **5 types depending on compression ratio**. (compression ratio: 1.7 / 14 / 30 / 50 / 75)





GB-SS

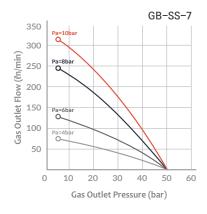
SIZE / PART NAME

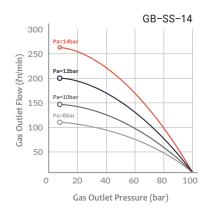
Please contact sales staff if you need further assistance.

GB-SS

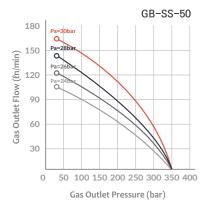
SPECIFICATION

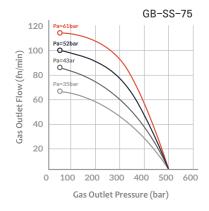
* Actual weight could be slightly different.


M.P(kg/cm²) = Ratio * Air Drive Pressure(kg/cm²)
 M.P is calculated with 7 bar(standardized air pressure).


Madal	D-4:-	Air Drive	Max.	Min.suction			ctions	Flow rate	Weight
Model	Ratio	Pressure(kg/cm²)	Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(ln /min)	(kg)	
SS-7	1:7	_	49	4	1/2" PT	1/2" PT 1/2" PT ⁻	555	16	
SS-14	1:14		98	7			600	16	
SS-30	1:30	5~10	210	14	9/16" 18UNF		564	17	
SS-50	1:50		350	21		9/16" 18 UNF	494	18	
SS-75	1:75		525	35				18	




GB-SS


PERFORMANCE CURVES

Theoretical charging time formula

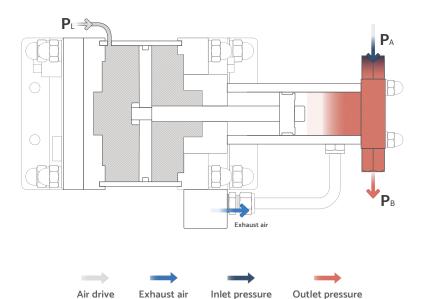
Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

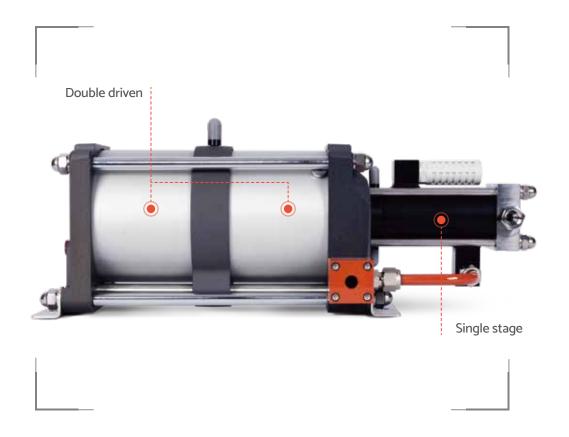
* Outlet pressure (Pb) = I-PI

Precautions

(Outlet Pressure = Compression ratio \cdot Air drive)

- $\boldsymbol{\cdot}$ There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.


GB-SS


OVERVIEW

P_L - Air drive

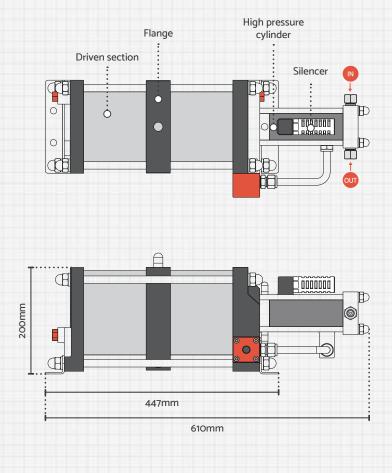
P_A - Suction gas

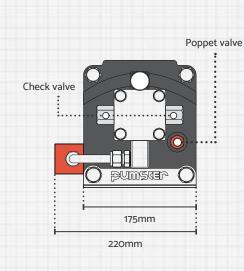
P_B - Discharging gas

GB-SD SERIES

Single stage & Double driven

Gas Booster GB-SD is consists of single stage and double driven part. There are 3 types depending on compression ratio. (compression ratio: 1:60 / 100 / 150)





GB-SD

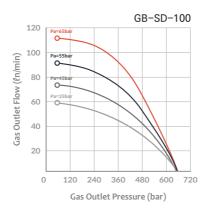
SIZE / PART NAME

* Please contact sales staff if you need further assistance.

GB-SD

SPECIFICATION


* Actual weight could be slightly different.


M.P(kg/ori) = Ratio * Air Drive Pressure(kg/ori)
 M.P is calculated with 7 bar(standardized air pressure).

M - J - I	D-4'-	Air Drive	Max. Min.Suction		Conne	Connections		Weight
Model	Ratio	Pressure(kg/cm²)	Pressure(kg/cm²)	Pressure(kg/㎝²)	Inlet	Outlet	(ℓn /min)	(kg)
SD-60	1:60		420	28			635	20
SD-100	1:100	5~10	700	31	9/16" 18UNF	9/16" 18 UNF	370	20
SD-150	1:150		1,050	35				21

GB-SD

PERFORMANCE CURVES

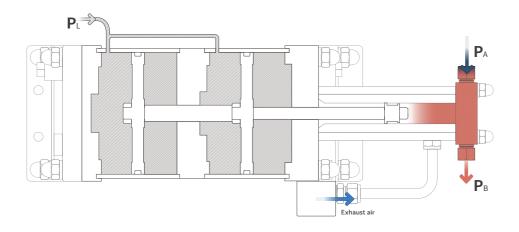
Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- $\boldsymbol{\cdot}$ High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.

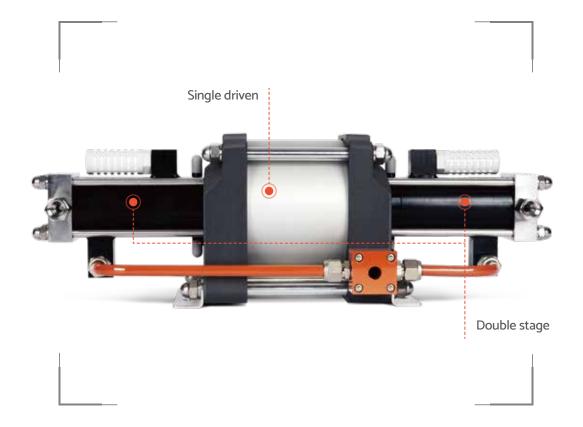

GB-SD

OVERVIEW

 $\textbf{P}_{\text{\tiny{L}}}$ - Air drive

 \mathbf{P}_{A} - Suction gas

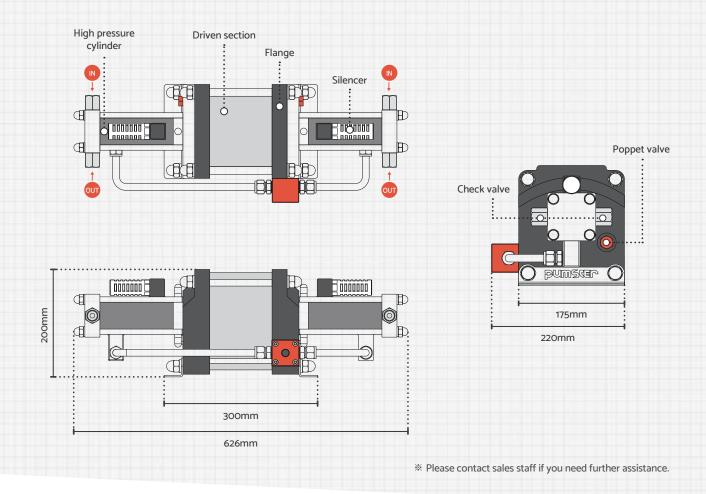
P_B - Discharging gas



GB-DS SERIES

Double stage & Single driven

Gas Booster GB-DS is consists of double stage and single driven part. There are 5 types depending on compression ratio. (compression ratio: 1:7/14/30/50/75)



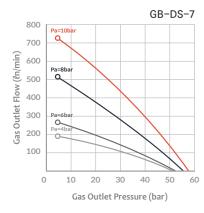
GB-DS

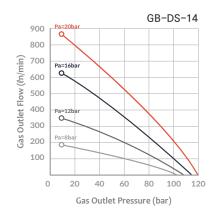
SIZE / PART NAME

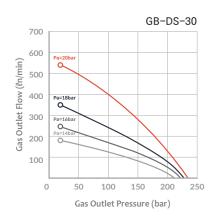
GB-DS

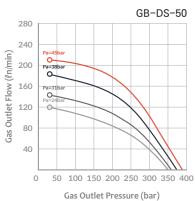
SPECIFICATION

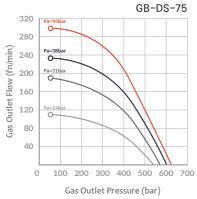
$\ensuremath{ imes}$ Actual weight could be slightly different.


** M.P(kg/cm²) = Ratio * Air Drive Pressure(kg/cm²)
 ** M.P is calculated with 7 bar(standardized air pressure).


Madal	D-4:-	Air Drive	Max.	Min.Suction			Flow rate	Weight	
Model	Ratio	Pressure(kg/㎝²)	Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(ln /min)	(kg)	
DS-7	1:7		49	4	1/2" PT	. (011	(2)	3,180	19
DS-14	1:14		98	7		1/2" PT	4,230	19	
DS-30	1:30	5~10	210	14	9/16" 18UNF	/16" 18UNF 9/16" 18 UNF	2,470	20	
DS-50	1:50		350	21			1,130	21	
DS-75	1:75		525	35			1,300	21	


| Gas Boosters | — 13


GB-DS


PERFORMANCE CURVES

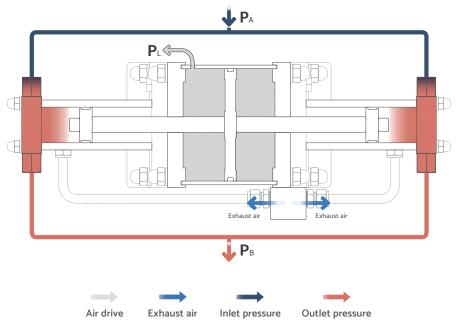
Theoretical charging time formula

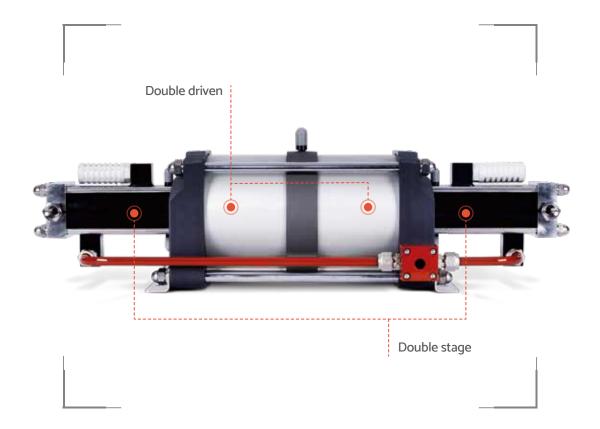
Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- $\boldsymbol{\cdot}$ Driven part: driven air pressure, flow rate
- $\boldsymbol{\cdot}$ High pressure part: inflow gas pressure, feed rate
- $\boldsymbol{\cdot}$ Actual flow rate will be different depending on utility.


GB-DS

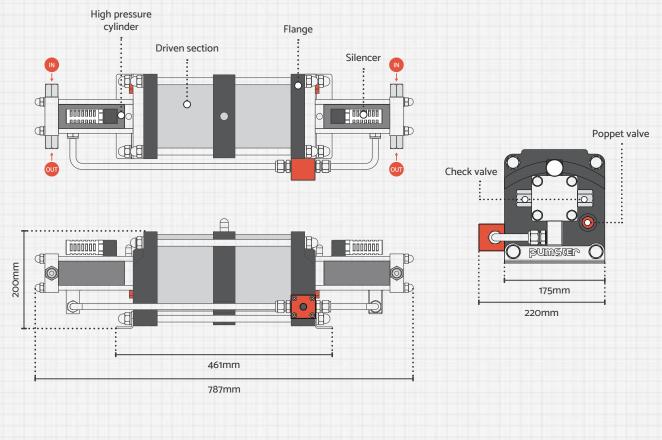

OVERVIEW

P_L - Air drive

 $\boldsymbol{P}_{\!\scriptscriptstyle{A}}$ - Suction gas

P_B - Discharging gas

GB-DD SERIES


Double stage & Double driven

Gas Booster GB-DD is consists of double stage and double driven part. There are 5 types depending on compression ratio. (compression ratio: 1:14/28/60/100/150)

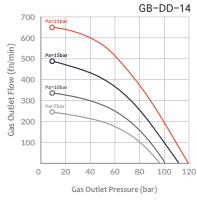
GB-DD

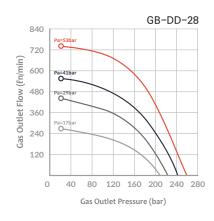
SIZE / PART NAME

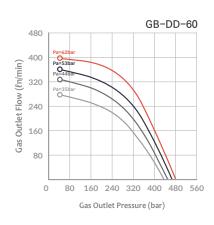
* Please contact sales staff if you need further assistance.

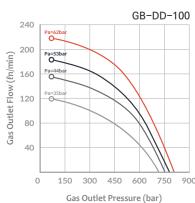
GB-DD

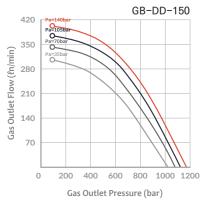
SPECIFICATION


* Actual weight could be slightly different.


* M.P(kg/om²) = Ratio * Air Drive Pressure(kg/om²)* M.P is calculated with 7 bar(standardized air pressure).


Medal	D-4'-	Air Drive	Max.	Min.Suction	Conne	ections	Flow rate	Weight
Model	Ratio	Pressure(kg/㎝²)	Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(ln /min)	(kg)
DD-14	1:14	_	98	7	1/2" PT	1/2" PT	6,000	23
DD-28	1:28		196	13			2,790	23
DD-60	1:60	5~10	420	28	9/16" 18UNF		2,050	24
DD-100	1:100		700	31		9/16" 18 UNF	1,130	25
DD-150	1:150		1,050	35			1,410	25


GB-DD


PERFORMANCE CURVES

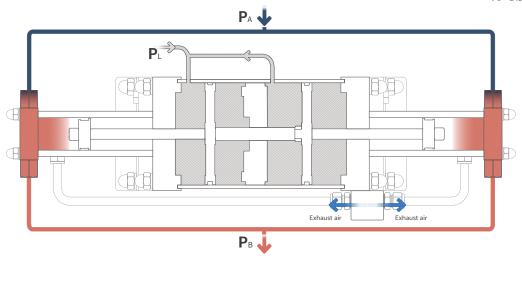
Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I·PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

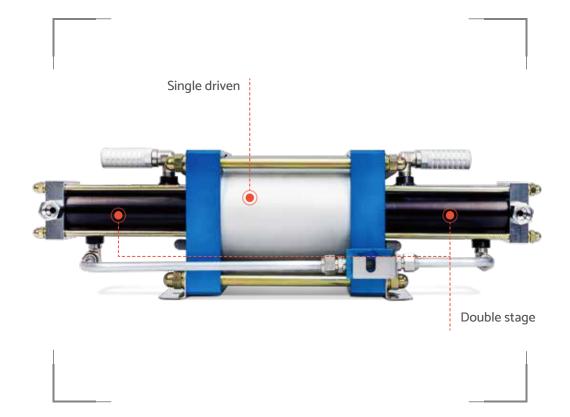
- There are lots of variables when increasing pressure under high pressure
- Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.


GB-DD

OVERVIEW

P_L - Air drive

 \mathbf{P}_{A} - Suction gas


Pв - Discharging gas

Inlet pressure

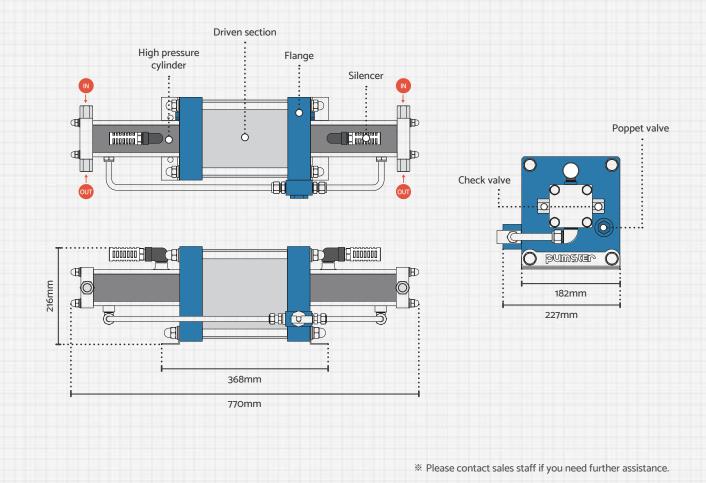
Outlet pressure

Air drive

GB-DS-7 SERIES

Double stage & Single driven

Gas Booster GB-DS(160ϕ) is a special model. It is consists of double stage and single driven part. (compression ratio: 1:7 [Driven part 160ϕ])

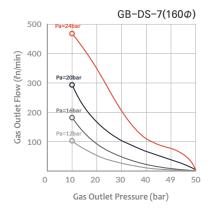


GB-DS-7(160Φ)

SIZE / PART NAME

GB-DS-7(160Φ)

SPECIFICATION


Model	Ratio	Air Drive Pressure(kg/ੴ)	Max. Pressure(kg/㎝²)	Min.Suction Pressure(kg/ੴ)	Conne	ctions Outlet	Flow rate (ln /min)	Weight (kg)
GB-DS-7 (160 <i>Φ</i>)	1:7	5~10	49	4	1/2" PT	1/2" PT	3,820	21

 [※] Actual weight could be slightly different.
 ※ M.P(kg/cm) = Ratio * Air Drive Pressure(kg/cm)

[※] M.P is calculated with 7 bar(standardized air pressure).

GB-DS-7(160Φ)

PERFORMANCE CURVES

Theoretical charging time formula

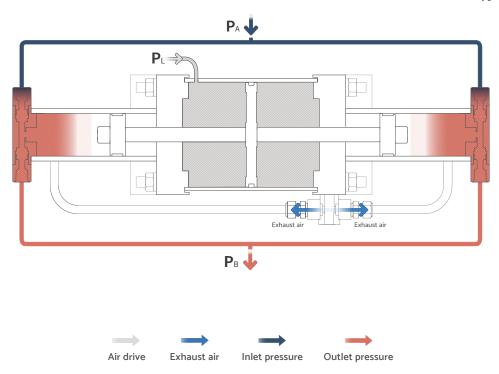
Reservoir tank x atm = TAL

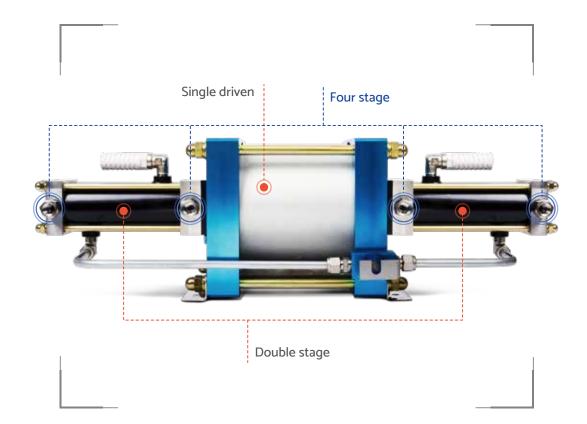
TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- $\boldsymbol{\cdot}$ Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.


GB-DS-7(160Φ)


OVERVIEW

P∟ - Air drive

P_A - Suction gas

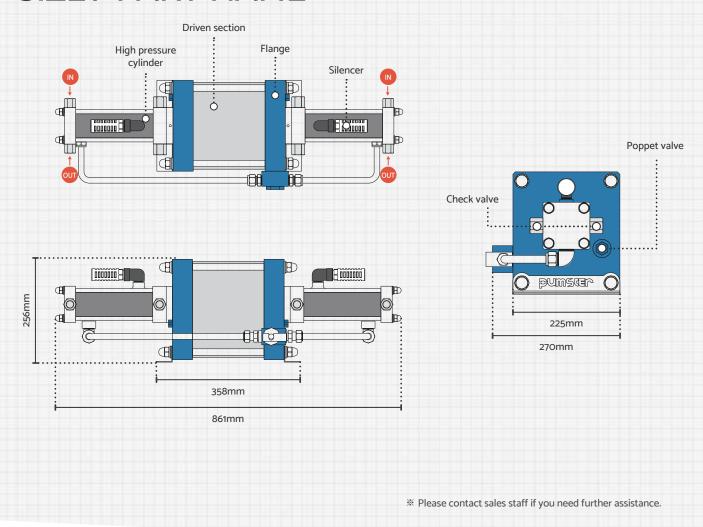
P_B - Discharging gas

GB-QS-7 SERIES

Four stage & Single driven

Gas Booster GB-QS(200ϕ) is a special model. It is consists of double stage(four displacement flow part) and single driven part.

(compression ratio: 1:7 [Driven part 200ϕ])



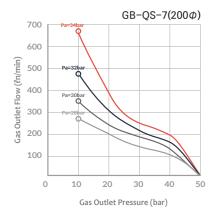
Gas Boosters

GB-QS-7(200Φ)

SIZE / PART NAME

GB-QS-7(200Φ)

SPECIFICATION


Model	Ratio	Air Drive Pressure(kg/c㎡)	Max. Pressure(kg/㎝²)	Min.Suction Pressure(kg/ੴ)	Conne	octions Outlet	Flow rate (In /min)	Weight (kg)
GB-QS-7 (200Φ)	1:7	5~10	49	4	1/2" PT	1/2" PT	4,200	40

 [※] Actual weight could be slightly different.
 ※ M.P(kg/cm) = Ratio * Air Drive Pressure(kg/cm)

^{M.P is calculated with 7 bar(standardized air pressure).}

GB-QS-7(200Φ)

PERFORMANCE CURVES

Theoretical charging time formula

Reservoir tank x atm = TAL

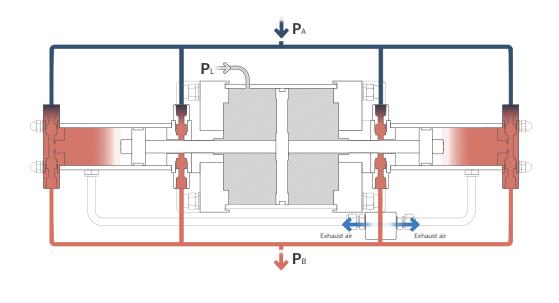
TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI

(Outlet Pressure = Compression ratio \cdot Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- $\boldsymbol{\cdot}$ Driven part: driven air pressure, flow rate
- · High pressure part: inflow gas pressure, feed rate
- · Actual flow rate will be different depending on utility.


GB-QS-7(200Φ)

OVERVIEW

 \mathbf{P}_{L} - Air drive

P_A - Suction gas

Pв - Discharging gas

LIQUIDPUMP SERIES

Air driven liquid pump is efficient in energy-saving. It could be applied in explosion proof area. It is suitable for transferring water or oil or increasing pressure of liquid.

HOW IT WORKS

Pneumatic operation by applying Pascal's Law

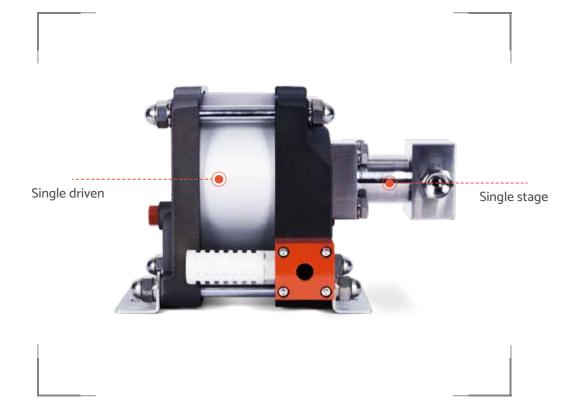
Based on Pascal's law, air driven LIQUID PUMP is increasing the pressure by the compression ratio. Air pressure makes the plunger to reciprocate. With repeated reciprocating of the plunger, it discharges and increases the liquid to out-check after compressing the liquid through in-check.

Features of Liquid Pump

For the compression of liquid substances such as water or oil.

Gurantess more than 1M times of durability of main seal

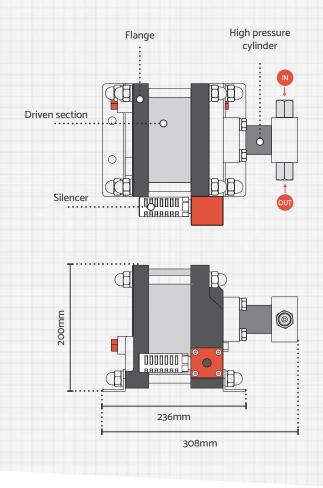
No requirement for electricity

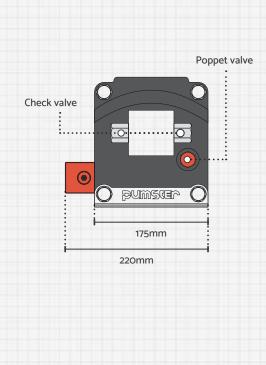

Oil free, no requirement for oil replacement, contamination

Suitable for explosion proof area

Available as a complete packaged system

LSS SERIES


Single stage & Single driven


Liquid Pump LSS is consists of sinlge stage and single driven part. There are 5 types depending on compression ratio. (compression ratio: 1:50/80/150/220/350)

LSS

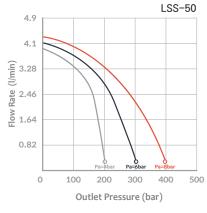
SIZE / PART NAME

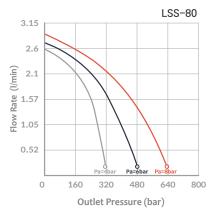
* Please contact sales staff if you need further assistance.

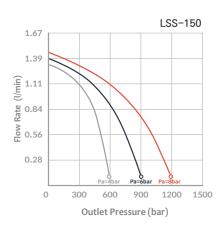
155

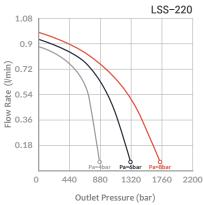
SPECIFICATION

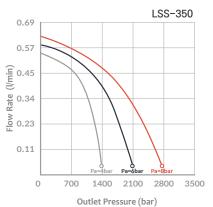
$\ensuremath{\mathbb{X}}$ Actual weight could be slightly different.


* M.P(kg/om²) = Ratio * Air Drive Pressure(kg/om²)* M.P is calculated with 7 bar(standardized air pressure).


	D .:	Air Drive	Max.	Max. Connections		Flow rate	Weight
Model	Ratio	Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(∜min)	(kg)
LSS-50	1:50		350		1/2" PT	1.1	12
LSS-80	1:80		560			0.7	12
LSS-150	1:150	5~10	1,050	1/2" PT	9/16" 18 UNF	0.4	12
LSS-220	1:220		1,540		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.27	12
LSS-350	1:350		2,450			0.18	12


LSS

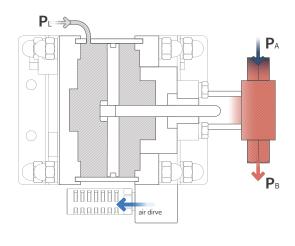

Liquid Pumps


PERFORMANCE CURVES

Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

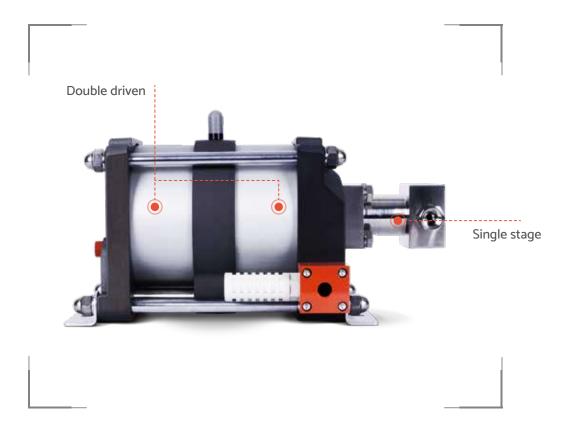
* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)


Precautions

- There are lots of variables when increasing pressure under high pressure
- $\boldsymbol{\cdot}$ Driven part: driven air pressure, flow rate
- $\boldsymbol{\cdot}$ High pressure part: inflow liquid pressure, feed rate
- · Actual flow rate will be different depending on utility.

OVERVIEW

P_B - Discharging Liquid



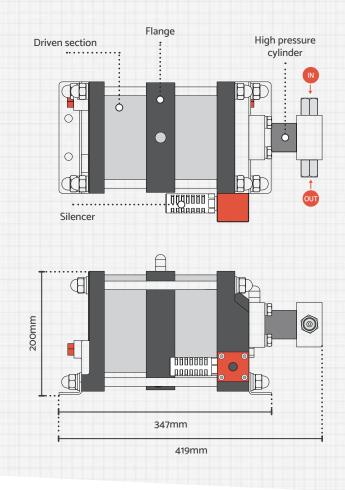
Air drive

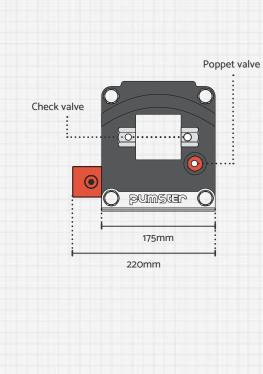
Full accept a fin

Inlet pressure

essure Outlet pressure

LSD SERIES


Single stage & Double driven

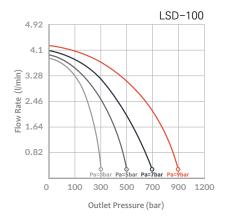

Liquid Pump LSD is consists of sinlge stage and double driven parts. There is 5 types depending on compression ratio. (compression ratio: 1:100/160/300/440/700)

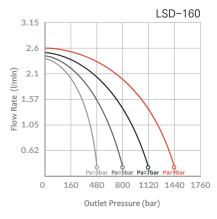
LSD

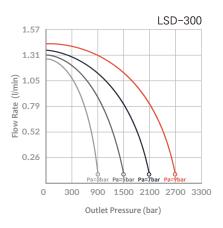
SIZE / PART NAME

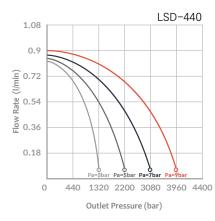
* Please contact sales staff if you need further assistance.

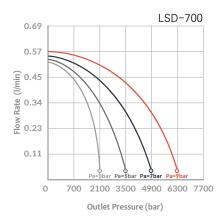
SPECIFICATION


$\ensuremath{\mathbb{X}}$ Actual weight could be slightly different.


* M.P(kg/cm²) = Ratio * Air Drive Pressure(kg/cm²) * M.P is calculated with 7 bar(standardized air pressure).


	D .:	Air Drive	Max.	Connections		Flow rate	Weight
Model	Ratio	Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(∜min)	(kg)
LSD-100	1:100	_	700			0.9	17
LSD-160	1:160		1,120			0.6	17
LSD-300	1:300	5~10	2,100	1/2" PT	9/16" 18 UNF	0.3	17
LSD-440	1:440		3,080			0.22	17
LSD-700	1:700		4,900			0.15	17


LSD


PERFORMANCE CURVES

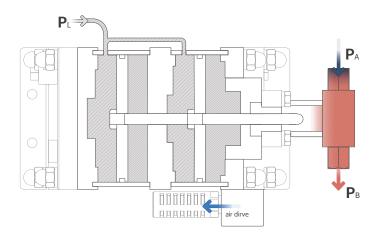
Theoretical charging time formula

Reservoir tank x atm = TAL TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- $\boldsymbol{\cdot}$ High pressure part: inflow liquid pressure, feed rate
- · Actual flow rate will be different depending on utility.

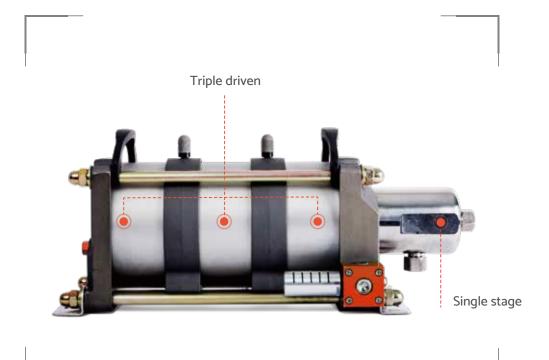

LSD

OVERVIEW

P∟ - Air drive

P_A - Suction Liquid

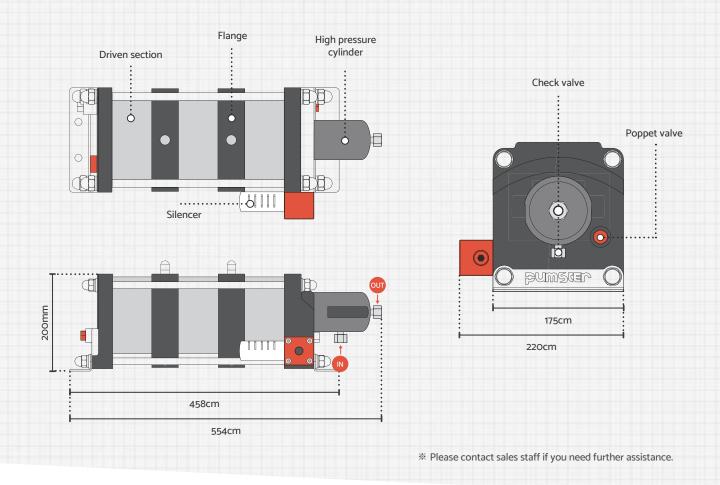
Pв - Discharging Liquid



LST SERIES

Single stage & Triple driven

Liquid Pump LST is consists of sinlge stage and triple driven parts.


There is 1 type according to compression ratio.

(compression ratio: 1:1050)

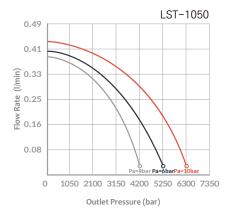
LST

SIZE / PART NAME

LST

SPECIFICATION

Madal	D-4'-	Air Drive	Max.	Max. Connections		Flow rate	Weight
Model	Ratio	Pressure(kg/cm²)	Pressure(kg/cm²)	Inlet	Outlet	(∜min)	(kg)
LST-1050	1:1,050	5~10	7,350	1/2" PT	9/16" 18 UNF	0.12	25


 $[\]ensuremath{\,\%\,}$ Actual weight could be slightly different.

[※] M.P(kg/cm²) = Ratio * Air Drive Pressure(kg/cm²)

 $[\]ensuremath{\,\%\,}$ M.P is calculated with 7 bar(standardized air pressure).

LST

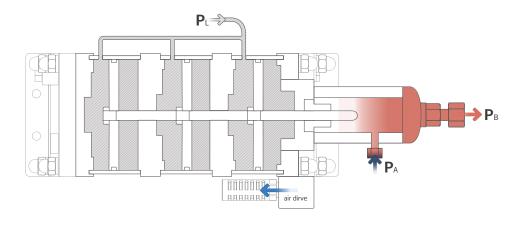
PERFORMANCE CURVES

Theoretical charging time formula

Reservoir tank x atm = TAL

TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI


(Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure
- · Driven part: driven air pressure, flow rate
- High pressure part: inflow liquid pressure, feed rate
- · Actual flow rate will be different depending on utility.

OVERVIEW

- P_L Air drive
- P_A Suction Liquid
- P_B Discharging Liquid

METERING PUMP SERIES

Metering pumps, which are reciprocating positive displacement pumps, provide the greatest possible metering accuracy. They set the standard for safety, reliability and efficiency, especially when it comes to pump supercritical fluids. Metering pumps are 3 models depending on vertical or horizontal type.

HOW IT WORKS

Flow Control Using Motor Rotation

With reciprocating of plunger, set amount is discharged with each stroke. Flow rate can be different by changing revcount of motor and control flow rate.

Flow rate is maintained constantly even though resistance pressure of displacement part is changed.

Features of Metering Pump

Control flow rate during operating or being hold

High pressure volumetric pump operated by the motor

Provide ±1% accuracy range 30-100% of max. flow rate

Plunger type volumetric pump

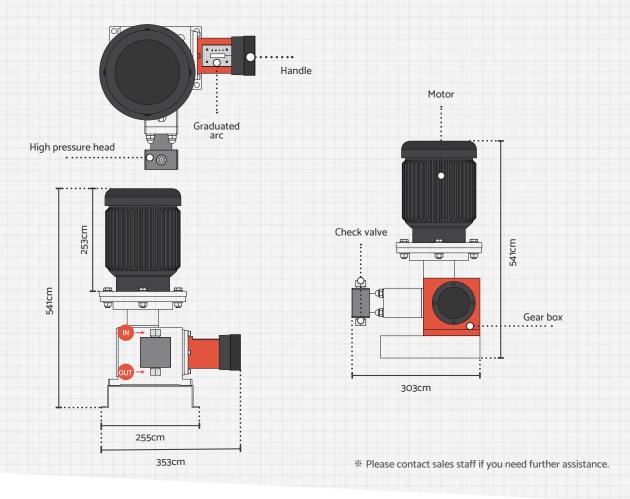
Simply control flow rate with changeable speed of motor

Longer durability of main seal

PSMV SERIES

Vertical Type

PSMV of vertical type is consists of one head. There are 4 types depending on flow rate and pressure. (max.flow rate: 25 / 70 / 110 / 165)



PSMV

SIZE / PART NAME

PSMV

SPECIFICATION

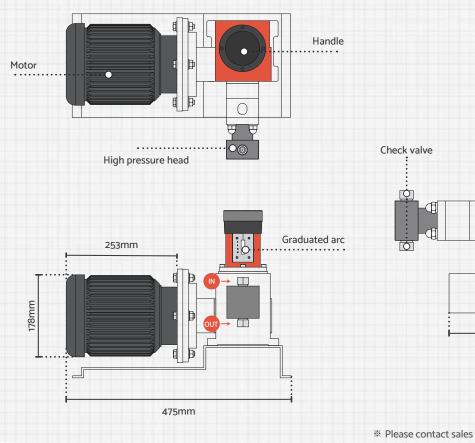
Model	Max.Pressure(kg/㎝)	Flow rate(mu/min)	Inlet	Outlet
PSMV-25	1,000	25		
PSMV-70	500	70	1/4" NPT	1/4" NPT
PSMV-110	350	110	1/4 NP1	1/4 NP1
PSMV-165	220	165		

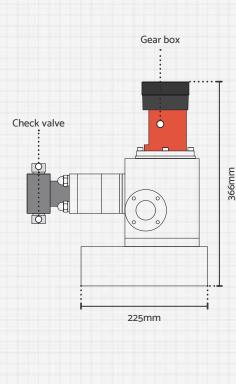
		Motor specification	
Voltage(v)	Power(kw)	Explosion Proof	Ambient Temperature(°C)
220/380	0.75	IP55	−20°C ~ +40°C

PSMH SERIES

Horizontal Type

PSMH of horizontal type is consists of with one head. There are 4 types depending on flow rate and pressure. (max.flow rate: 25 / 70 / 110 / 165)





PSMH

SIZE / PART NAME


 $\ensuremath{\mathbb{X}}$ Please contact sales staff if you need further assistance.

PSMH

SPECIFICATION

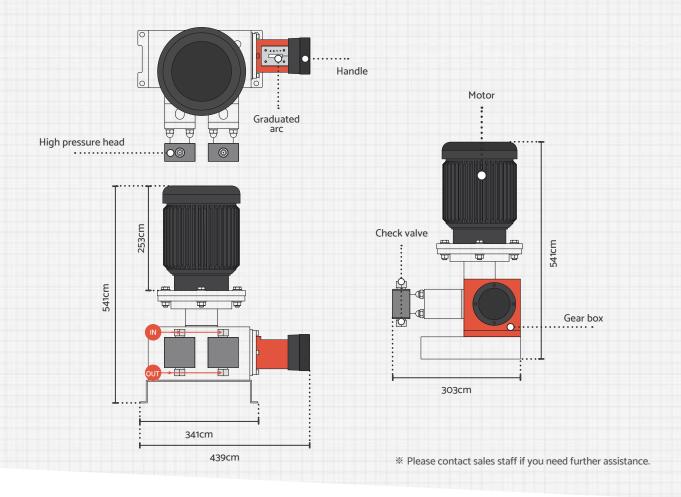
Model	Max.Pressure(kg/㎝)	Flow rate(mu/min)	Inlet	Outlet
PSMH-25	1,000	25		1/4" NPT
PSMH-70	500	70		
PSMH-110	350	110	1/4" NPT	
PSMH-165	220	165		

Motor specification				
Voltage(v)	Power(kw)	Explosion Proof	Ambient Temperature(℃)	
220/380	0.75	IP55	-20°C ~ +40°C	

PSMVT SERIES

Vertical With Two Head Type

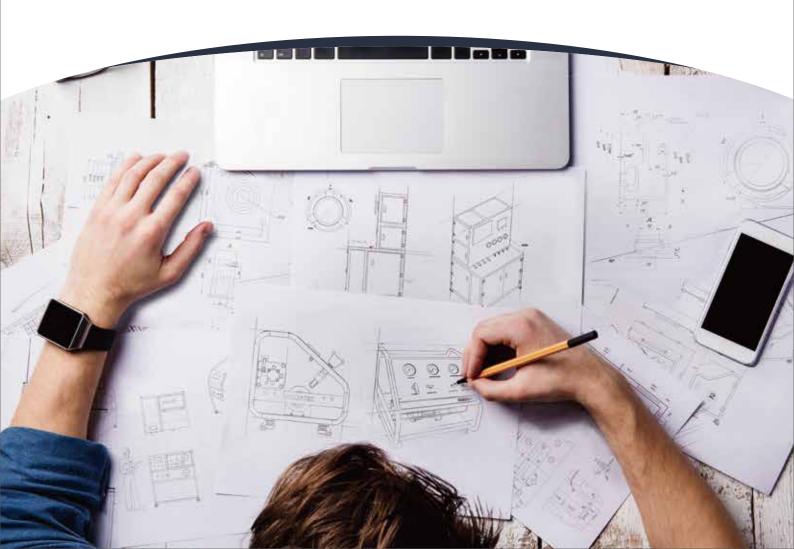
PSMVT of vertical type is consists of with two heads. There are 4 types depending on flow rate and pressure. (max.flow rate: 50 / 140 / 220 / 330)



PSMVT

SIZE / PART NAME

PSMVT


SPECIFICATION

Model	Max.Pressure(kg/㎝²)	Flow rate(ml/min)	Inlet	Outlet
PSMVT-50	1,000	50	1/4" NPT	1/4" NPT
PSMVT-140	500	140		
PSMVT-220	350	220	1/4 INF1	
PSMVT-330	220	330		

Motor specification			
Voltage(v)	Power(kw)	Explosion Proof	Ambient Temperature(°C)
220/380	0.75	IP55	−20°C ~ +40°C

PRESSURE TESTING

which is provided with order-made service

Portable Pressure Testing

compact testing with compact operation

- Available for gases or liquids
- Applied in various application such as internal pressure, air tightness, leak, bursting
- Operated safely due to the safety valve when over pressure occurs
- Compact design with reasonable price
- · Control with easy operation

Multipurpose Pressure Testing

testing where fluids are filled in separate vessels for use control at the desired pressure.

- Available for gases or liquids
- Applied in various application such as internal pressure, air tightness, leak, bursting
- Be discharged by constant pressure (options: pressure vessel)
- Operated safely due to the safety valve when over pressure occurs
- Be movable with casters
- Controlled with automatic or manual (option)

Burst, leakage for Valves Testing

pressure testing for leak and durability of valves and high pressure fitting

- Limit measurement of fatigue&burst or leak testing
- Less pulsation with separate pressure vessel
- Increasing pressure of step by step and repeating test
- Operated safely due to double safety fuction
- Controlled with automatic or manual (option)

Hydrostatic Testing

internal pressure and leakage testing

- Hydrostatic (internal pressure and leak) testing
- · Alarm function when the leak occurs under setting
- · Increasing pressure of step by step and repeating test
- Check real-time the sample with CCTV or a monitor (options)
- Operated safely due to double safety fuction when over pressure occurs
- Controlled with automatic or manual (in manual operation, it isn't available for leak alarm function and increasing pressure of step by step.)

External Pressure Testing

testing by pressuring to sample after increasing gas or liquid to separate pressure vessel

- Available for gas or liquid
- Available for external testing or molding by pressuring to sample
- Sensor/machinery of measure device, simulation like subsea, destructive testing
- Operated safely due to double safety fuction when over pressure occurs
- Controlled with automatic or manual (options: touch screen, cover(open/close),vent, etc.)

High Pressure Cleaning for Orifice Module

high pressure cleaning for solving nozzle blockage of orifice module

- Whole material of stand: Stainless steel
- Easy detachment of orifice module
- Recycle of liquid with reservoir tank
- · Control with easy operation

Propane pressure testing

propane pressure testing

- For propane only
- Cooling compression heat through the cooling coil
- Be discharged by constant pressure (options: pressure vessel)
- Operated safely due to the safety valve when over pressure occurs

Oxygen gas filling

- For oxygen only
- Be economical by refilling oxygen
- Gas will be recycled to gas suction by safety vavle when over pressure occurs

Liquid and Nitrogen injection system

available for injecting, collecting and recycling of liquid and using the vacuum and nitrogen

- All-in-one for injecting, collecting and recycling of liquid
- Injection for liquid and the vacuum
- Precision test of undersea acoustic sensor

Bolt Tensioner Pump

bolt tensioner pump to tight the bolt tensioners

- Lightweight pump with hydraulic pressure for easy and quick bolting operation and movement
- Compact design consisting of pressure gauge, valves, regulators
- Be applied in various industry such as oil&gas, subsea, wind turbin, etc.

Model	1odel Max.pressure(bar)	Weight(kg)	Dimension(mm)			
riodei	i-iax.pressure(bar/		length	width	height	
PBT-1500	1,500	27	400	337	378	
PBT-2100	2,100		488			

Special Pressure Testing Equipment

testing for internal pressure and leak of liquid

Produced with special purpose to meet customers' requirement

Pressure Testing for Rental

available for rental

- Available for rent when user want period
- Available for gas or liquid
- Applied in various application such as internal pressure, air tightness, leak, bursting
- Operated safely due to the safety valve when over pressure occurs

Pumster products which was applied in various application

Pumster products are applied in various application.

Leak testing in explosion proof purpose

Bursting testing

Leak testing

- · Autoclave increasing (N2)
- · CIP(Cold Isostatic Press)

Testing module for torpedo maintenance

Testing module for secondary increasing pressure and filling from low-pressure compressor

Testing module for increasing pressure and filling and spraying with propane and butane

Testing module for increasing pressure and re-filling ethylene with 500L

Testing module for increasing pressure hydrogen(H2)

