

GAS BOOSTER LIQUID PUMP PRESSURE TESTING

PRODUCT CATALOG

LIQUID PUMP

Pneumatic operation by applying Pascal's Law

Liquid pump pressurizing through Cross-section ratio by Pascal's Law, create big energy by converting air pressure to straight reciprocal movement. In this point, inflowed liquid through IN Check valve is compressed and outflowed / pressurized to the Out Check valve.

- For the compression of liquid substances such as water or oil.
- Gurantess more than 1M times of durability of main seal.
- No requirement for electricity.
- Oil free, no requirement for oil replacement, contamination.
- Suitable for explosion proof area.
- Diversely compatible for different models according to using pressure and flow rate.

LSS SERIES

Single stage & Single driven

Liquid Pump LSS consists of single stage and single driven part. There are **5 types depending on compression ratio**. (compression ratio: 1:50/80/150/220/350)

LSS SPECIFICATION

* Please contact sales staff if you need further assistance.

Model	LSS-50	LSS - 80	LSS-150	LSS-220	LSS-350	
Ratio	1:50	1:80	1:150	1:220	1:350	
Air Drive Pressure (kg / वार)			5 ~ 10			
Max. Pressure (kg / ar)	350	560	1,050	1,540	2,450	
Connections (inlet / outlet)	1/2"PT / 1/2"PT	2"PT / 1/2"PT				
Welght (kg)	12					

[%] M.P(kg/cm) = Ratio * Air Drive Pressure(kg/cm) % M.P is calculated with 7 bar(standardized air pressure).

Weight is approximate value.

LSS

PERFORMANCE CURVES

Theoretical charging time formula

Reservoir tank x atm = TAL

TAL /(Flow rate/sec) = total charging time

* Outlet pressure (Pb) = I-PI (Outlet Pressure = Compression ratio · Air drive)

Precautions

- There are lots of variables when increasing pressure under high pressure.
- · Driven part: driven air pressure, flow rate
- · High pressure part: inflow liquid pressure, feed rate
- · Actual flow rate will be different depending on utility.

OVERVIEW

P_A Suction liquid

 $\mathbf{P}_{\!\scriptscriptstyle B}$ Discharging liquid

P Air drive

140, Daehwa-ro 106 beon-gil, Daedeok-gu, Daejeon Pumster Co., Ltd. TEL. 042 716 0085 | FAX. 042 716 0086 | pumster@pumster.com

